Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

نویسندگان

  • Roshanak Khandanlou
  • Mansor B. Ahmad
  • Hamid Reza Fard Masoumi
  • Kamyar Shameli
  • Mahiran Basri
  • Katayoon Kalantari
چکیده

Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Study and Equilibrium Isotherm Analysis of Nickel (II) Adsorption onto Alginate-SBA-15 Nanocomposite

The present work was undertaken to evaluate the feasibility of nickel (II) removal from aqueous solution by adsorption onto a biopolymer adsorbent. The adsorbent was prepared using modification of mesoporous silicate SBA-15 with alginate biopolymer (alginateSBA-15) by encapsulation method. Morphological structure of the obtained nanocomposite adsorbent was characterized by XRD, scanning electro...

متن کامل

Adsorption of Lead and Copper by a Carbon Black and Sodium Bentonite Composite Material: Study on Adsorption Isotherms and Kinetics

The efficiency of using a composite of carbon black and sodium bentonite in treating drinking water contaminated with lead and copper ions was analysed. The effects of pH, contact time, concentration and adsorbent dosage using an adsorbent composite of 20 % sodium bentonite and 80 % carbon black were studied. The adsorption data was tested with respect to Langmuir, Freundlich and Temkin iso...

متن کامل

Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite

The present investigation describes the evaluation of feasibility of MWCNT-Fe3O4 nanocomposite toward adsorptive removal of Co(II) and Pb(II) from aqueous solution in batch mode. The Fe3O4–MWCNT hybrid was prepared using a simple one-pot strategy via in situ growth of Fe3O4 magnetic nanoparticles onto the surface of the MWCNT...

متن کامل

Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation

In this study, the removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite was investigated. The nanocrystalline magnetite was synthesized by mechanochemical activation of hematite in a high energy planetary mill in argon atmosphere for 45 hours. The ability of the synthesized nanocrystalline magnetite for removal of Cd(II) and Pb(II) from aqueous solutions was studi...

متن کامل

Removal of copper (II) from aqueous solutions by sodium alginate/hydroxy apatite hydrogel modified by Zeolite

The study presented in this article investigated the removal of copper ions from aqueous solutions by a synthetic hydrogel-forming adsorbent polymer based on sodium alginate (SA) and hydroxy apatite (HA) nanoparticles. The effect of adding Zeolite on the adsorption performance of this hydrogel was also investigated, and the optimum amount of Zeolite was determined by changing its quantity. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015